Exploderende sterren bestoken ons inderdaad met kosmische straling

Utrechtse astronomen hebben voor het eerst metingen verricht die direct laten zien dat supernovaresten uitstekende deeltjesversnellers zijn. Elke dag bombarderen talloze deeltjes uit de ruimte onze aardatmosfeer. Deze deeltjes zijn klein, bestaan voornamelijk uit protonen, bewegen met bijna de lichtsnelheid en hebben zeer hoge energieën: hoger nog dan de deeltjesversneller in Genève kan bereiken. Al eerder was aangetoond dat de overblijfselen van supernova’s kosmische deeltjes in de Melkweg tot enorm hoge energieën kunnen versnellen. De Utrechtse promovenda Eveline Helder en haar co-promotor Jacco Vink hebben nu voor het eerst een meting gedaan die direct aantoont hoeveel energie van het gas van de supernova wordt omgezet in kosmische straling. Dat blijkt meer te zijn dan 50 procent.

De astronomen keken naar een ster die explodeerde in het jaar 185, en is waargenomen door Chinese astronomen. Deze supernovarest, RCW 86, staat op 8200 lichtjaar afstand in de richting van het sterrenbeeld Circinus (‘Passer’). Met behulp van de Europese Very Large Telescope in Chili, deden Helder, Vink en collega’s metingen aan de temperatuur van het gas direct achter de schokgolf die door de supernova-explosie wordt gevormd. Ze bepaalden ook de snelheid van de schokgolf door twee opnames van het observatorium Chandra te vergelijken. Ze ontdekten dat de schokgolf beweegt met 10 tot 30 miljoen kilometer per uur. De temperatuur van het gas blijkt 30 miljoen graden Celsius te zijn. Dat is veel minder heet dan de minimaal 500 miljoen graden Celsius die op basis van de snelheid van de schokgolf zou worden verwacht. Deze ontbrekende energie is de energie die zorgt voor de versnelling van de kosmische deeltjes.