Browse Tag: Zon

Mysterie jonge zon en vloeibaar water groter dan ooit

Er stroomt al ruim 3,8 miljard jaar vloeibaar water op de aarde, sinds vlak na het ontstaan van onze planeet. Het bewijs hiervoor komt van gesteente dat dateert uit de jaren waarin water zich over het aardoppervlak verspreidde. Paleontologen en geologen zitten echter met de handen in het haar, aangezien de zon destijds ongeveer dertig procent zwakker was dan vandaag de dag en zodoende niet genoeg warmte af zou hebben gegeven om het water op onze planeet vloeibaar te houden. Deze paradox houdt wetenschappers al sinds de zeventiger jaren bezig en een oplossing lijkt nog lang niet in zicht.

Gigantische uitbarsting gezien op zonneoppervlak

Op het oppervlak van de zon heeft gisteren een enorme uitbarsting plaatsgevonden. Het ‘mega-filament’ van zonnemagnetisme kwam, zoals verwacht, gisteravond in uitbarsting, hetgeen tot gevolg had dat een naar schatting 700.000 kilometer lange protuberans de ruimte in werd geslingerd. Het Solar Dynamics Observatory, een zonneobservatorium dat onze ster voortdurend in de gaten houdt, wist bijzondere opnamen van de eruptie te maken.

Wat is de grootste ster in het universum?

Het universum is groot. Héél groot. Het is dan ook onmogelijk om een antwoord te geven op de vraag wat de grootste ster is die tot op de dag van vandaag het levenslicht heeft gezien. Dus laten we de vraag verfijnen: wat is de grootste ster waar men tot op heden op is gestuit?

De zon speelt met vuur

De zon betreedt op dit moment langzaam maar zeker de actieve periode van haar elfjarige zonnecyclus na maanden geen noemenswaardig teken van activiteit vertoond te hebben. Als gevolg daarvan was er afgelopen woensdag een indrukwekkende zonnevlam zichtbaar op het oppervlak van onze ster. Bij de uitbarsting kwam een C3-klasse zonnevlam vrij, die overigens niet op onze planeet gericht was.

Instorting deel aardse dampkring stelt onderzoekers voor raadsel

Er is een bijzondere gebeurtenis gaande in de atmosfeer van onze planeet. Hoog boven het oppervlak van de aarde, waar de dampkring overloopt in de ruimte, is een ijle laag van gas genaamd de thermosfeer kortgeleden ingestort. Het verschijnsel had plaats tijdens het diepe zonneminimum van tussen 2008 en 2009 – een feit dat niet als een al te grote verrassing aankomt bij onderzoekers. Wanneer de zonneactiviteit laag is, koelt de thermosfeer namelijk af, hetgeen tot gevolg heeft dat deze laag van de atmosfeer inkrimpt. In dit geval was de omvang van de instorting echter twee tot drie keer zo groot dan lage zonneactiviteit zou kunnen verklaren.

De thermosfeer bevindt zich op negentig tot meer dan zeshonderd kilometer boven het aardoppervlak. Het is een gebied waar voornamelijk meteoren, aurora’s en satellieten voorkomen. Het is tevens de plek waar straling afkomstig van de zon voor het eerst contact maakt met onze planeet. De thermosfeer onderschept extreem ultraviolette straling van de grond voordat het de grond kan bereiken. Op het moment dat de zonneactiviteit hoog is, wordt de laag verwarmd door deze straling, waardoor de thermosfeer als een marshmallow boven een kampvuur op begint te zwellen. Het tegenovergestelde gebeurt wanneer de zonneactiviteit laag is.

In de afgelopen jaren is onze ster zelden actief geweest. In 2008 en 2009 belandde de zon in een ongekend diep minimum. Zonnevlekken waren schaars, zonnevlammen bestonden bijna niet en de hoeveelheid extreem ultraviolette straling die de aarde bereikte was zeer klein. Onderzoekers vestigden hun aandacht onmiddellijk op de thermosfeer om te zien wat voor invloed dit zou hebben op dit deel van de atmosfeer.

Bij het bepalen van wat er zich afspeelt in het bovenste deel van de dampkring maakt men gebruik van een speciale techniek. Omdat satellieten een aerodynamische wrijving voelen tijdens hun reis door de thermosfeer is het mogelijk om de omstandigheden in dit deel van de atmosfeer te bepalen met behulp van de ondervonden vertraging. Door deze vertraging bij vijfduizend verschillende satellieten tussen 1967 en 2010 in kaart te brengen, wist men de dichtheid, temperatuur en druk in de thermosfeer in de afgelopen decennia te bepalen. De gegevens lieten zien dat de thermosferische instorting niet alleen groter van was iedere vorige instorting, maar ook groter was dan de zonneactiviteit zou kunnen verklaren.

Een mogelijke verklaring is koolstofdioxide. Wanneer koolstiofdioxide in de thermosfeer belandt, wordt een groot deel van de warmte afgescheiden door infrarode straling en zorgt het gas dus voor een verkoeling. Het is algemeen bekend dat de hoeveelheid koolstofdioxide in de aardatmosfeer groter is geworden. Meer van dit gas in de thermosfeer zou de verkoelende werking van het zonneminimum versterkt kunnen worden.

De aanwezigheid van een grotere hoeveelheid koolstofdioxide in de dampkring lijkt de instorting van de thermosfeer echter ook niet volledig te kunnen verklaren. Een lage hoeveelheid extreem ultraviolette straling van de zon wordt voor ongeveer dertig procent van de instorting verantwoordelijk gehouden, terwijl dat percentage bij de extra koolstofdioxide slechts tien procent bedraagt. Dat betekent dat de resterende zestig procent door één of meerdere andere factoren veroorzaakt wordt. Welke? Daar hoopt men spoedig achter te komen.

Overgrote deel kometen zag het levenslicht bij andere sterren

Een groot aantal van de meest bekende kometen, met inbegrip van Halley, Hale-Bopp en, meest recentelijk, McNaught hebben het levenslicht in een baan rond andere sterren gezien, zo suggereert een onderzoek dat is uitgevoerd door een internationaal team van astronomen dat onder leiding stond van het Hal Levison van het Southwest Research Institute. De onderzoekers maakten gebruik van computersimulaties om aan te tonen dat de zon kleine ijzige hemellichamen gevangen kan hebben van haar ‘broers’ of ‘ zussen’ op het moment dat onze ster zich nog in het cluster bevond waar zij en talloze andere sterren geboren worden. Door deze overname kon een reservoir voor waargenomen kometen gecreëerd worden.

Hoewel de zon op dit moment niet vergezeld wordt door andere sterren, wordt verondersteld dat dat zij in een ver verleden in een cluster met honderden sterren die dicht op elkaar zaten in een dichte wolk van gas ontstond. Op dat moment vormde iedere ster een groot aantal kleine ijzige objecten (kometen) in een schijf waarin ook planeten gevormd worden. Het overgrote deel van deze kometen werden onder invloed van de zwaartekracht uit de prenatale planetenstelsels geslingerd door de vorming van nieuwe planeten en zweefden apart van elkaar door het cluster.

Het cluster van sterren hield stand tot het moment waarop de heetste jonge sterren gas uit begonnen te blazen. De nieuwe modellen die de onderzoekers hebben opgesteld laten zien dat de zon een groot deel van de kometen in het cluster aan wist te trekken op het moment dat deze versnipperde. “In haar jeugd deelde de zon veel materiaal met andere sterren en het resultaat daarvan kunnen we vandaag de dag zien,” aldus Levison. “ Het overnameproces is verrassend efficiënt en leidt tot de mogelijkheid dat de wolk materiaal van een groot aantal stellaire broers en zussen van onze ster bevat.”

Bewijs voor deze opvatting is afkomstig van de bolvormige wolk van kometen, welke bekend staat als de Oortwolk, die de zon tot halverwege de afstand tot de dichtstbijzijnde ster omgeeft. Het is algemeen aangenomen dat deze wolk gevormd werd met materiaal dat afkomstig is uit de protoplanetaire schijf die onze ster enkele miljoenen jaren omringde. De opgestelde modellen laten echter zien er veel minder kometen in ons zonnestelsel aanwezig zouden moeten zijn als dit het geval is. “Onze conclusie luidt dat ruim negentig procent van de waargenomen kometen uit de Oortwolk hun oorsprong gevonden bij een andere ster dan de zon,” zei Levison tot slot.

De zon door de ogen van NASA’s nieuwe observatorium SDO

Hetgeen dat je hieronder ziet is één van de eerste opnamen van het Solar Dynamics Observatory (SDO), wiens camera de meest gedetailleerde beelden van onze ster tot op heden heeft weten te produceren. Het technologisch geavanceerde ruimtevaartuig is in staat om de zon iedere 0,75 seconde te fotograferen en stuurt dagelijks ongeveer anderhalve terabyte aan gegevens naar de aarde, wat gelijk is aan het downloaden van 380 films op een dag.

Het observatorium werd op 11 februari jongstleden gelanceerd en opende enkele weken geleden diens ogen. Bij toeval begon het zonneoppervlak op dat moment iets actiever te worden. De beelden die gisteren gepubliceerd werden, zijn verzameld op 30 maart van dit jaar en bestaan uit een combinatie van opnamen die gemaakt zijn door vier verschillende telescopen. Mede daardoor is de resolutie van de nieuwe beelden ruim tien keer zo hoog als die van de meeste Full-HD televisies die vandaag de dag op de markt zijn.

Ook dit keer geldt dat beelden meer zeggen dan woorden, dus voor meer beeldmateriaal verwijs ik jullie door naar deze pagina. Daar zijn – naast foto’s – talloze video’s te vinden die het oppervlak van onze ster in verschillende golflengtes tonen.

Prachtig, nietwaar?

Oranje dwergster Gliese 710 koerst af op het zonnestelsel

De analyse van nieuwe gegevens over de bewegingssnelheid van sterren heeft uitgewezen dat er een kans van 86 procent bestaat dat de oranje dwergster Gliese 710 binnen een tijdsbestek van anderhalf miljoen jaar ons zonnestelsel zal naderen. In totaal vond men negen nieuwe kandidaat-sterren die de zon mogelijk in de verre toekomst gaan vergezellen. De resultaten, die zijn verkregen tijdens een studie die uit werd uitgevoerd door Vadim Bobylev van het Pulkovo Astronomical Observatory in het Russische St. Petersburg zijn gebaseerd op de door de ruimtesonde Hipparcos verzameld gegevens die in 1997 gepubliceerd werden.

De kans dat Gliese 710 zich ooit in de binnenste regionen van het zonnestelsel zal begeven is echter nihil. De kans dat de ster de Oortwolk, een gebied dat zich op één tot twee lichtjaar van het centrum van ons planetenstelsel bevindt binnendringt mag dan wel 86 procent bedragen, maar de kans dat deze zich binnen de Kuipergordel, welke zich op dertig tot vijftig AE van de zon bevindt is slecht één op tienduizend, oftewel 0,01 procent. Gliese 710 is op dit moment nog 63 lichtjaar van onze planeet verwijderd in de richting van het sterrenbeeld Slang (Serpens Caput).

Daar komt echter wel een ander gevaar bij om de hoek kijken. Wanneer de ster daadwerkelijk de Oortwolk zal naderen is de kans groot dat diens aanwezigheid ervoor zal zorgen dat de baan een groot aantal komeetachtige objecten die zich aan de buitenkant van het zonnestelsel bevinden verstoord zal raken en er een ‘zwerm’ van ijzige rotsblokken onze kant op wordt gestuurd. Of de mensheid op dat moment nog op aarde uithangt is echter nog maar zeer de vraag.

Planeet Venus ontsnapt aan het zonlicht en wordt ‘avondster’

Is het een vliegtuig, een UFO of toch een heldere ster? Geen van allen. Het is onze zusterplaneet Venus die de komende tijd de dominante rol van gasreus Jupiter aan de avondhemel over zal nemen en geleidelijk aan beter zichtbaar wordt. Nadat Venus voor het laatst goed zichtbaar was toen het aan de ochtendhemel stond, verdween de planeet op 11 januari jongstleden achter de zon. Het object was gedurende enkele weken niet te zien vanwege het feit dat de gloed van de zon het overstraalde. Aan de hemel verwijdert de planeet zich nu van de zon en beweegt richting het oosten.

Dat betekent dat Venus over een niet al te lange tijd een ‘avondster’ zal worden. De planeet bevindt zich dezer dagen rond zonsondergang in het westelijke deel van de hemel en zal langzaamaan steeds hoger komen te staan. In maart is het object zonder moeite met het blote oog zichtbaar nadat onze ster achter de horizon is verdwenen. Met een magnitude van -3.9 is Venus op dat moment het helderste natuurlijke object aan de hemel na de zon en de maan. Een gemakkelijke prooi dus.

In de eerste week van juni verdwijnt onze zusterplaneet pas twee en een half uur na zonsondergang achter de horizon. De afstand tussen de zon en de planeet aan de hemel zal op dat moment ook het grootst zijn. Het is dan de moeite waard om het object met een telescoop te bekijken, aangezien het net zoals de maan door verschillende fases gaat. Tussen nu en oktober zullen regelmatige observaties alle groottes en fases Venus laten zien, zelfs met een kleine kijker.

Sterke afkoeling waargenomen in aardse dampkring

De lage zonneactiviteit in de laatste jaren heeft tot een sterke afkoeling van de buitenste laag van de atmosfeer van onze planeet geleid, zo blijkt uit nieuwe observaties. De gegevens, die afkomstig zijn van de TIMED-missie, laten zien dat de thermosfeer, welke honderd kilometer boven het aardoppervlak gelegen is, sterk op de effecten die de elfjarige zonnecyclus met zich mee brengt heeft gereageerd. De resultaten kunnen nieuw licht schijnen op het zwellen en krimpen van de aardse damprking – een verschijnsel dat invloed heeft op de banen van satellieten en ruimteafval – en kunnen bovendien van waarde zijn bij het op de proef stellen van de voorspellingen dat de door mensen uitgestote koolstofdioxide de thermosfeer af zou doen koelen.